flowchart LR
A["工业相机采集图像"]:::source
B["图像预处理去噪/ROI/增强等"]:::prep
C["AI模型推理识别缺陷检测/分拣/分类"]:::ai
D["识别结果分析OK/NG/分数/标签"]:::analyze
E["PLC输出控制指令"]:::ctrl
F["机械臂执行拒判/分拣/报警"]:::exec
A --> B
B --> C
C --> D
D --> E
E --> F
%% 样式
classDef source fill:#e3f2fd,stroke:#1e88e5,stroke-width:2px,color:#1565c0,rounded:10px
classDef prep fill:#b2dfdb,stroke:#00897b,stroke-width:2px,color:#004d40,rounded:10px
classDef ai fill:#d1c4e9,stroke:#7e57c2,stroke-width:2px,color:#4527a0,rounded:10px
classDef analyze fill:#fff59d,stroke:#fbc02d,stroke-width:2px,color:#6d4c00,rounded:10px
classDef ctrl fill:#ffccbc,stroke:#ff7043,stroke-width:2px,color:#4e342e,rounded:10px
classDef exec fill:#a5d6a7,stroke:#388e3c,stroke-width:2px,color:#1b5e20,rounded:10px
💡 案例说明
锂电池产线检测系统
使用 500 万像素工业相机 + YOLOv8,检测极片表面瑕疵;
Jetson Xavier NX 本地部署模型,延迟低于 60ms;
精度达 98.5%,替代 3 名人工检测员。
2️⃣ 医疗影像辅助识别
在医疗场景中,AI机器视觉协助医生进行影像诊断、术中导航与风险预判。
📌 场景例子
CT / X光 / 超声图像智能标注
内窥镜实时风险检测(如出血点、组织异常)
🌟 技术细节
图像输入 → 自动标注分割 → 医生界面可复查调整;
支持边缘模型部署在本地医疗设备,满足合规要求。
四、AI机器视觉系统部署推荐架构
📦 标准技术栈参考
模块
组件推荐
图像采集
Hikvision/FLIR/Basler 工业相机
AI芯片平台
Jetson Xavier NX, RK3588, Hailo-8
部署系统
Ubuntu 20.04 + TensorRT + Docker
视觉模型框架
PyTorch, ONNX, Ultralytics YOLOv8
控制输出
PLC(西门子S7/欧姆龙)、Modbus、OPC-UA等
云边协同平台
MQTT + WebSocket + InfluxDB/Grafana
🖼️ 架构图:AI机器视觉完整部署结构图
flowchart LR
Cam["相机采集工业相机/多路采集"]:::input
Pre["预处理去噪/ROI/增强等"]:::prep
EdgeAI["AI边缘推理设备GPU/NPU/嵌入式盒子"]:::ai
Out["控制输出PLC/机器人/产线联动"]:::ctrl
Upload["数据上报采集/分析/日志"]:::upl
Cloud["云平台分析集中数据/大数据AI"]:::cloud
Opt["模型优化/更新AI训练/在线下发"]:::update
Cam --> Pre
Pre --> EdgeAI
EdgeAI --> Out
EdgeAI --> Upload
Upload --> Cloud
Cloud --> Opt
%% 样式定义
classDef input fill:#e3f2fd,stroke:#1976d2,stroke-width:2px,color:#0d47a1,rounded:10px
classDef prep fill:#b2dfdb,stroke:#00897b,stroke-width:2px,color:#00695c,rounded:10px
classDef ai fill:#d1c4e9,stroke:#512da8,stroke-width:2px,color:#311b92,rounded:10px
classDef ctrl fill:#ffe082,stroke:#fbc02d,stroke-width:2px,color:#6d4c00,rounded:10px
classDef upl fill:#b3e5fc,stroke:#0288d1,stroke-width:2px,color:#01579b,rounded:10px
classDef cloud fill:#ffccbc,stroke:#ff7043,stroke-width:2px,color:#4e342e,rounded:10px
classDef update fill:#a5d6a7,stroke:#388e3c,stroke-width:2px,color:#1b5e20,rounded:10px
flowchart LR
A["样本采集生产/实验/线上采集"]:::sample
B["数据标注人工/自动标注平台"]:::label
C["模型训练监督/自监督/多任务"]:::train
D["部署测试评估精度/性能/效果"]:::deploy
E["边缘部署AI盒子/产线/移动端"]:::edge
F["数据回流线上新样本/错误样本收集"]:::flow
G["模型再训练/微调增量/迁移学习"]:::tune
A --> B
B --> C
C --> D
D --> E
E --> F
F --> G
G -- "模型迭代" --> D
%% 样式分层
classDef sample fill:#e3f2fd,stroke:#1976d2,stroke-width:2px,color:#0d47a1,rounded:10px
classDef label fill:#ffe082,stroke:#fbc02d,stroke-width:2px,color:#6d4c00,rounded:10px
classDef train fill:#d1c4e9,stroke:#7e57c2,stroke-width:2px,color:#4527a0,rounded:10px
classDef deploy fill:#b2dfdb,stroke:#00897b,stroke-width:2px,color:#004d40,rounded:10px
classDef edge fill:#ffccbc,stroke:#ff7043,stroke-width:2px,color:#4e342e,rounded:10px
classDef flow fill:#b3e5fc,stroke:#0288d1,stroke-width:2px,color:#01579b,rounded:10px
classDef tune fill:#a5d6a7,stroke:#388e3c,stroke-width:2px,color:#1b5e20,rounded:10px