17191073931

10个可直接复制到智能家居的 Dify Workflow实例

精选10个可直接复制的智能家居自动化Dify Workflow实例,涵盖语音助手、能源优化、宠物看护等场景,支持Home Assistant与Tuya平台集成。


在智能家居系统的自动化场景中,很多人会用 Home Assistant、Tuya、米家、HomeKit 等平台做自动化逻辑,但这些平台的内置逻辑编排往往比较“硬”,需要用户自己写复杂的条件和脚本。Dify Workflow 的出现,让 AI 驱动的自动化成为可能——它不仅能接入本地或云端的智能家居设备,还可以在触发条件中引入 AI 推理、自然语言处理、多模态识别等能力,实现真正的“聪明”家居。

本文精选了 10个可以直接复制并稍加修改即可使用的 Dify Workflow 智能家居实例,覆盖安防、能源管理、环境调节、家电控制等核心场景。你可以直接将这些 Workflow 导入到 Dify 平台,根据自己的设备 API、MQTT 主题或 Webhook URL 进行配置,即可快速上线。


实例 1:AI 安防报警助手

功能描述

  • 联动家庭摄像头与 AI 图像识别,当检测到有人闯入并且不是家庭成员时,触发推送与声光报警。
  • 结合人脸识别与人体姿态分析,减少宠物或快递员误报。

Workflow 核心流程

  1. 订阅摄像头事件(MQTT/RTSP AI 检测回调)
  2. AI 节点调用人脸数据库比对
  3. 如果识别为陌生人 → 控制灯光闪烁 + 推送语音到智能音箱
  4. 同时向手机 App 推送带截图的警报通知

适配建议

  • 摄像头品牌:海康威视、TP-Link Tapo、Tuya 摄像头
  • AI 模型:OpenAI Vision API / YOLOv8 / DeepFace

AI 安防报警助手(摄像头 + 人脸识别 + 报警联动)

{
  "name": "AI 安防报警助手",
  "version": "1.0",
  "description": "摄像头事件→人脸识别→陌生人触发报警与通知",
  "env": {
    "MQTT_BROKER_URL": "mqtt://broker.local:1883",
    "CAMERA_EVENT_TOPIC": "home/cam/frontdoor/event",
    "KNOWN_FACE_API": "https://your-face-api/identify",
    "ALERT_WEBHOOK": "https://your-app/alert",
    "SPEAKER_TTS_API": "https://your-speaker/tts"
  },
  "triggers": [
    {
      "id": "t1",
      "type": "mqtt",
      "topic": "{{CAMERA_EVENT_TOPIC}}",
      "qos": 1,
      "payload_mapping": "json"
    }
  ],
  "nodes": [
    {
      "id": "n1",
      "type": "condition",
      "name": "是否有人触发",
      "params": { "expr": "payload.event == 'motion' || payload.event == 'person_detected'" }
    },
    {
      "id": "n2",
      "type": "http",
      "name": "人脸识别",
      "params": {
        "method": "POST",
        "url": "{{KNOWN_FACE_API}}",
        "headers": { "Content-Type": "application/json" },
        "body": { "image_url": "{{payload.snapshot_url}}" }
      }
    },
    {
      "id": "n3",
      "type": "condition",
      "name": "是否陌生人",
      "params": { "expr": "result.n2.body.is_known == false" }
    },
    {
      "id": "n4",
      "type": "http",
      "name": "推送报警到App",
      "params": {
        "method": "POST",
        "url": "{{ALERT_WEBHOOK}}",
        "body": {
          "title": "门口疑似入侵",
          "message": "检测到陌生人",
          "image": "{{payload.snapshot_url}}"
        }
      }
    },
    {
      "id": "n5",
      "type": "http",
      "name": "语音播报警示",
      "params": {
        "method": "POST",
        "url": "{{SPEAKER_TTS_API}}",
        "body": { "text": "警告!检测到陌生人,请注意安全!" }
      }
    }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "n1", "to": "n2", "condition": "true" },
    { "from": "n2", "to": "n3" },
    { "from": "n3", "to": "n4", "condition": "true" },
    { "from": "n3", "to": "n5", "condition": "true" }
  ]
}

实例 2:智能节能照明调节

功能描述

  • 根据室外光照强度、房间内活动情况,自动调整灯光亮度与色温,节省用电。

Workflow 核心流程

  1. 定时或传感器上报光照强度
  2. AI 节点计算所需照度(结合时间、天气、用户喜好)
  3. 控制灯具亮度和色温(通过 Tuya API 或 Zigbee2MQTT)
  4. 用日志记录每次调节的节能效果

适配建议

  • 光照传感器:Aqara、Philips Hue、米家光照传感器
  • 灯具控制:Zigbee、Wi-Fi 智能灯泡

智能节能照明调节(光照 + 活动 + 灯光亮度/色温)

{
  "name": "智能节能照明调节",
  "version": "1.0",
  "description": "根据室外光照/室内活动自动调灯",
  "env": {
    "LUX_TOPIC": "home/sensor/lux",
    "PRESENCE_TOPIC": "home/room/living/presence",
    "LIGHT_API": "https://your-iot/light/set",
    "MODEL_API": "https://your-ai/lighting"
  },
  "triggers": [
    { "id": "t1", "type": "mqtt", "topic": "{{LUX_TOPIC}}", "payload_mapping": "json" },
    { "id": "t2", "type": "mqtt", "topic": "{{PRESENCE_TOPIC}}", "payload_mapping": "json" },
    { "id": "t3", "type": "schedule", "cron": "*/10 * * * *" }
  ],
  "nodes": [
    {
      "id": "n1",
      "type": "ai",
      "name": "计算最佳照度与色温",
      "params": {
        "model": "gpt-4.1-mini",
        "prompt": "根据室外光照、当前时间、是否有人活动与节能策略,输出推荐亮度(0-100)与色温(2700-6500K)。输入: {{context}}",
        "inputs": { "context": { "lux": "{{state.lux}}", "presence": "{{state.presence}}", "time": "{{now}}"} }
      }
    },
    {
      "id": "n2",
      "type": "http",
      "name": "下发灯光设置",
      "params": {
        "method": "POST",
        "url": "{{LIGHT_API}}",
        "body": { "brightness": "{{result.n1.output.brightness}}", "ct": "{{result.n1.output.ct}}" }
      }
    }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "t2", "to": "n1" },
    { "from": "t3", "to": "n1" },
    { "from": "n1", "to": "n2" }
  ],
  "state_reducers": {
    "lux": { "on": "t1", "path": "payload.value" },
    "presence": { "on": "t2", "path": "payload.present" }
  }
}

实例 3:AI 智能空调调温

功能描述

  • 结合天气预报、室内温湿度、用户体感反馈,实现“懂你”的空调温控策略。

Workflow 核心流程

  1. 室内温湿度传感器实时上报
  2. AI 节点分析外部天气 + 用户历史喜好
  3. 计算最佳温度(例如湿度高时略调低温度)
  4. 控制空调模式、温度与风速

适配建议

  • 空调控制:红外遥控器桥接、Home Assistant + Tuya
  • AI 节点:Dify 内置 OpenAI / Claude

AI 智能空调调温(天气 + 体感偏好)

{
  "name": "AI 智能空调调温",
  "version": "1.0",
  "description": "天气+室内温湿度+偏好 → 最佳空调参数",
  "env": {
    "INDOOR_THS_TOPIC": "home/sensor/ths/living",
    "WEATHER_API": "https://api.weather.com/v3/...",
    "AC_API": "https://your-iot/ac/set"
  },
  "triggers": [
    { "id": "t1", "type": "mqtt", "topic": "{{INDOOR_THS_TOPIC}}", "payload_mapping": "json" },
    { "id": "t2", "type": "schedule", "cron": "*/5 * * * *" }
  ],
  "nodes": [
    {
      "id": "n1",
      "type": "http",
      "name": "获取外部天气",
      "params": { "method": "GET", "url": "{{WEATHER_API}}?loc=beijing" }
    },
    {
      "id": "n2",
      "type": "ai",
      "name": "计算空调设定",
      "params": {
        "model": "gpt-4.1",
        "prompt": "根据室内温湿度与天气,输出 mode(cool/heat/auto), temp(℃), fan(low/med/high)。输入:室内{{payload}},天气{{result.n1.body}}"
      }
    },
    {
      "id": "n3",
      "type": "http",
      "name": "设置空调",
      "params": { "method": "POST", "url": "{{AC_API}}", "body": "{{result.n2.output}}" }
    }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "t2", "to": "n1" },
    { "from": "n1", "to": "n2" },
    { "from": "n2", "to": "n3" }
  ]
}

实例 4:AI 洗衣机状态预测

功能描述

  • 基于用电曲线和震动数据,预测洗衣机运行状态,提前告知用户完成时间。

Workflow 核心流程

  1. 功率传感器采集实时耗电数据
  2. AI 模型分析运行模式曲线
  3. 判断“运行/漂洗/脱水/结束”阶段
  4. 预计完成时间并推送到手机与智能音箱

适配建议

  • 能耗监测:Shelly Plug、Tuya 插座、WattPanel 系列
  • 数据处理:Dify 调用 Python Code Execution 节点

AI 洗衣机状态预测(能耗曲线 + 震动)

{
  "name": "AI 洗衣机状态预测",
  "version": "1.0",
  "description": "基于功率曲线预测阶段与完成时间",
  "env": {
    "POWER_TOPIC": "home/appliance/washer/power",
    "NOTIFY_WEBHOOK": "https://your-app/notify"
  },
  "triggers": [
    { "id": "t1", "type": "mqtt", "topic": "{{POWER_TOPIC}}", "payload_mapping": "json" }
  ],
  "nodes": [
    {
      "id": "n1",
      "type": "ai",
      "name": "阶段识别与时间估计",
      "params": {
        "model": "gpt-4.1-mini",
        "prompt": "根据过去30分钟功率序列识别洗衣阶段(洗/漂/脱水/完成)并估算剩余时间(分钟)。输入: {{series}}",
        "inputs": { "series": "{{timeseries.last_30m(POWER_TOPIC)}}" }
      }
    },
    {
      "id": "n2",
      "type": "http",
      "name": "通知用户",
      "params": {
        "method": "POST",
        "url": "{{NOTIFY_WEBHOOK}}",
        "body": { "title": "洗衣机状态更新", "stage": "{{result.n1.output.stage}}", "eta_min": "{{result.n1.output.eta_min}}" }
      }
    }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "n1", "to": "n2" }
  ]
}

实例 5:智能花园灌溉助手

功能描述

  • 根据天气、土壤湿度和植物种类自动浇水,并避免雨天或高湿天气浪费水资源。

Workflow 核心流程

  1. 土壤湿度传感器与天气 API 数据输入
  2. AI 模型判断是否需要浇水
  3. 控制电磁阀开关(MQTT/Relay)
  4. 记录灌溉日志与节水数据

适配建议

  • 传感器:Tuya 土壤湿度传感器、Sonoff TH 系列
  • 执行设备:12V 电磁阀 + 智能继电器

智能花园灌溉助手(湿度 + 天气 + 电磁阀)

{
  "name": "智能花园灌溉助手",
  "version": "1.0",
  "description": "湿度/天气/植物类型 → 自动灌溉",
  "env": {
    "SOIL_TOPIC": "home/garden/soil",
    "WEATHER_API": "https://api.weather.com/v3/...",
    "VALVE_TOPIC": "home/garden/valve/set"
  },
  "triggers": [
    { "id": "t1", "type": "mqtt", "topic": "{{SOIL_TOPIC}}", "payload_mapping": "json" },
    { "id": "t2", "type": "schedule", "cron": "0 */1 * * *" }
  ],
  "nodes": [
    { "id": "n1", "type": "http", "name": "获取天气", "params": { "method": "GET", "url": "{{WEATHER_API}}?loc=beijing" } },
    {
      "id": "n2",
      "type": "ai",
      "name": "判断是否浇水",
      "params": {
        "model": "gpt-4.1-mini",
        "prompt": "根据土壤湿度{{payload.moisture}}与天气{{result.n1.body}},输出 irrigate(true/false) 与 duration_sec。",
        "stop": []
      }
    },
    {
      "id": "n3",
      "type": "mqtt_publish",
      "name": "控制电磁阀",
      "params": {
        "broker": "{{MQTT_BROKER_URL}}",
        "topic": "{{VALVE_TOPIC}}",
        "qos": 1,
        "payload": { "on": "{{result.n2.output.irrigate}}", "duration": "{{result.n2.output.duration_sec}}" }
      }
    }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "t2", "to": "n1" },
    { "from": "n1", "to": "n2" },
    { "from": "n2", "to": "n3", "condition": "result.n2.output.irrigate == true" }
  ]
}

实例 6:AI 语音家务助理

功能描述

  • 家人通过智能音箱或手机语音输入自然语言指令(如“帮我启动扫地机器人”),AI 解析意图并执行相应的家务任务。

Workflow 核心流程

  1. 语音转文字(ASR)模块接收用户指令
  2. AI 节点做意图识别与任务匹配
  3. 调用相应设备 API(扫地机器人、窗帘、电饭煲等)
  4. 向用户回传执行结果(TTS 播报或 App 通知)

适配建议

  • 硬件:小爱音箱、Google Nest Audio、Amazon Echo
  • AI 模型:OpenAI GPT、Claude、DeepSeek-R1

AI 语音家务助理(ASR + 意图识别 + 家电控制)

{
  "name": "AI 语音家务助理",
  "version": "1.0",
  "description": "语音意图→扫地/窗帘/电饭煲等控制",
  "env": {
    "ASR_WEBHOOK": "https://your-asr/callback",
    "DEVICE_API": "https://your-iot/device/command"
  },
  "triggers": [
    { "id": "t1", "type": "webhook", "path": "/voice-intent", "method": "POST" }
  ],
  "nodes": [
    {
      "id": "n1",
      "type": "ai",
      "name": "意图识别与槽位提取",
      "params": {
        "model": "gpt-4.1-mini",
        "prompt": "从用户指令中抽取 intent(扫地/窗帘/电饭煲等) 与 slots(房间/时间/模式)。输入: {{payload.text}}"
      }
    },
    {
      "id": "n2",
      "type": "http",
      "name": "下发设备命令",
      "params": {
        "method": "POST",
        "url": "{{DEVICE_API}}",
        "body": { "intent": "{{result.n1.output.intent}}", "slots": "{{result.n1.output.slots}}" }
      }
    }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "n1", "to": "n2" }
  ]
}

实例 7:家庭成员到家提醒与自动场景

功能描述

  • 利用定位与人脸识别判断家庭成员是否到家,并自动触发欢迎场景(开灯、开空调、播放音乐)。

Workflow 核心流程

  1. 通过手机定位或门口摄像头人脸识别确认身份
  2. AI 节点匹配用户偏好场景
  3. 执行灯光、温控、音响、窗帘等多设备联动
  4. 记录回家时间用于家庭成员出入统计

适配建议

  • 位置服务:Home Assistant Companion App、Tuya GeoFence
  • AI 场景匹配:Dify 结合用户配置数据库

家人到家提醒与自动场景(定位/人脸 → 场景匹配)

{
  "name": "到家提醒与自动场景",
  "version": "1.0",
  "description": "定位/人脸识别→匹配个性化场景",
  "env": {
    "PRESENCE_WEBHOOK": "https://your-app/presence",
    "SCENE_API": "https://your-iot/scene/run"
  },
  "triggers": [
    { "id": "t1", "type": "webhook", "path": "/presence", "method": "POST" }
  ],
  "nodes": [
    { "id": "n1", "type": "ai", "name": "偏好场景匹配", "params": { "model": "gpt-4.1-mini", "prompt": "根据家庭成员{{payload.user}}的偏好与时间段,输出要触发的场景列表。" } },
    { "id": "n2", "type": "http", "name": "执行场景", "params": { "method": "POST", "url": "{{SCENE_API}}", "body": { "scenes": "{{result.n1.output.scenes}}" } } }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "n1", "to": "n2" }
  ]
}

实例 8:AI 厨房助手

功能描述

  • 根据冰箱库存、家庭成员口味和天气推荐菜谱,并指导智能厨电完成烹饪。

Workflow 核心流程

  1. 冰箱库存传感器或手动录入库存数据
  2. AI 节点根据库存、口味、天气生成菜单
  3. 控制电饭煲、烤箱等厨电执行烹饪模式
  4. 在智能屏或 App 上显示步骤提示

适配建议

  • 硬件:博世智能冰箱、米家电饭煲
  • 菜谱推荐:调用 Dify 内的 LangChain + 知识库检索

AI 厨房助手(库存/口味/天气 → 菜谱 + 厨电控制)

{
  "name": "AI 厨房助手",
  "version": "1.0",
  "description": "根据库存/口味/天气推荐菜谱并控制厨电",
  "env": {
    "INVENTORY_API": "https://your-kitchen/inventory",
    "WEATHER_API": "https://api.weather.com/v3/...",
    "COOKER_API": "https://your-iot/cooker"
  },
  "triggers": [
    { "id": "t1", "type": "webhook", "path": "/menu", "method": "POST" }
  ],
  "nodes": [
    { "id": "n1", "type": "http", "name": "获取库存", "params": { "method": "GET", "url": "{{INVENTORY_API}}" } },
    { "id": "n2", "type": "http", "name": "获取天气", "params": { "method": "GET", "url": "{{WEATHER_API}}?loc=beijing" } },
    {
      "id": "n3",
      "type": "ai",
      "name": "生成菜谱",
      "params": {
        "model": "gpt-4.1",
        "prompt": "结合库存{{result.n1.body}}、口味{{payload.preference}}、天气{{result.n2.body}},输出菜谱与步骤。"
      }
    },
    { "id": "n4", "type": "http", "name": "控制厨电", "params": { "method": "POST", "url": "{{COOKER_API}}", "body": "{{result.n3.output.program}}" } }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "t1", "to": "n2" },
    { "from": "n1", "to": "n3" },
    { "from": "n2", "to": "n3" },
    { "from": "n3", "to": "n4" }
  ]
}

实例 9:AI 宠物看护

功能描述

  • 结合摄像头、自动喂食器和环境传感器,实现远程宠物看护与健康提醒。

Workflow 核心流程

  1. 摄像头捕捉宠物活动并做姿态识别
  2. AI 节点分析是否需要喂食或提醒清理
  3. 控制自动喂食器、饮水机等
  4. 向主人推送宠物健康报告

适配建议

  • 硬件:Petcube Camera、Tuya 宠物喂食器
  • AI 分析:YOLOv8 + 动作识别模型

AI 宠物看护(摄像头 + 喂食器 + 健康提醒)

{
  "name": "AI 宠物看护",
  "version": "1.0",
  "description": "姿态识别+定时喂食+健康报告",
  "env": {
    "PET_CAM_TOPIC": "home/cam/pet/event",
    "FEEDER_API": "https://your-iot/feeder",
    "OWNER_NOTIFY": "https://your-app/pet/notify"
  },
  "triggers": [
    { "id": "t1", "type": "mqtt", "topic": "{{PET_CAM_TOPIC}}", "payload_mapping": "json" }
  ],
  "nodes": [
    {
      "id": "n1",
      "type": "ai",
      "name": "宠物活动分析",
      "params": { "model": "gpt-4.1-mini", "prompt": "根据活动检测与历史进食时间,判断是否需要喂食或提醒清洁。" }
    },
    { "id": "n2", "type": "http", "name": "控制喂食器", "params": { "method": "POST", "url": "{{FEEDER_API}}", "body": "{{result.n1.output.feed_cmd}}" } },
    { "id": "n3", "type": "http", "name": "推送健康报告", "params": { "method": "POST", "url": "{{OWNER_NOTIFY}}", "body": "{{result.n1.output.health_report}}" } }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "n1", "to": "n2", "condition": "result.n1.output.feed == true" },
    { "from": "n1", "to": "n3" }
  ]
}

实例 10:全屋能源优化助手

功能描述

  • 根据电价、用电曲线和天气预测,自动调整家电运行时间,降低峰值用电费用。

Workflow 核心流程

  1. 电价 API + 实时用电数据输入
  2. AI 节点预测未来 24 小时用电曲线
  3. 自动安排家电(洗衣机、热水器等)运行时段
  4. 每日生成节能报告

适配建议

  • 能耗监测:Grus.io WattPanel 系列、Shelly EM
  • AI 预测:Dify + 时序预测模型(Prophet/LSTM)

全屋能源优化助手(电价 + 负载预测 + 设备排程)

{
  "name": "全屋能源优化助手",
  "version": "1.0",
  "description": "电价与用电曲线预测→家电排程优化",
  "env": {
    "POWER_STREAM_TOPIC": "home/energy/power",
    "ELECTRICITY_PRICE_API": "https://your-grid/price",
    "SCHEDULER_API": "https://your-iot/scheduler"
  },
  "triggers": [
    { "id": "t1", "type": "schedule", "cron": "0 */1 * * *" }
  ],
  "nodes": [
    { "id": "n1", "type": "http", "name": "获取电价", "params": { "method": "GET", "url": "{{ELECTRICITY_PRICE_API}}" } },
    {
      "id": "n2",
      "type": "ai",
      "name": "未来24小时负载预测",
      "params": {
        "model": "gpt-4.1",
        "prompt": "根据历史用电序列{{timeseries.last_24h(POWER_STREAM_TOPIC)}}与电价{{result.n1.body}},输出设备排程建议,避免峰段。"
      }
    },
    { "id": "n3", "type": "http", "name": "下发排程", "params": { "method": "POST", "url": "{{SCHEDULER_API}}", "body": "{{result.n2.output.schedule}}" } }
  ],
  "edges": [
    { "from": "t1", "to": "n1" },
    { "from": "n1", "to": "n2" },
    { "from": "n2", "to": "n3" }
  ]
}

使用与导入提示

  • 把每段 JSON 存为独立文件(例如 wf-security.json、wf-lighting.json …),在 Dify 控制台选择 导入 Workflow
  • env 内的变量替换为你的实际配置:MQTT Broker、Webhook、设备 API、模型名称等。
  • 如果你的 Dify 版本导出/导入 Schema 不一致,把 nodes[].type 调整为你实际版本的节点名(如 http-request、mqtt-publish、llm、code、condition 等),params 字段名也做对应替换。

Mermaid 图表:Dify Workflow 智能家居自动化架构

flowchart LR %% ========= 分层 ========= subgraph Ingest["输入采集层"] direction TB A["传感器/设备输入"] end subgraph Orchestration["编排与AI决策"] direction TB B["Dify Workflow"] C["AI 模型推理"] end subgraph Execution["执行与设备控制"] direction TB D["执行控制指令"] E["智能家居设备"] end subgraph Feedback["反馈与通知"] direction TB F["执行结果反馈"] G["用户终端App/音箱"] end %% ========= 主链路 ========= A -- "MQTT/HTTP Webhook" --> B B --> C C --> D D -- "API/MQTT/Zigbee" --> E E --> F F -- "通知" --> G %% ========= 美化样式 ========= classDef ingest fill:#E6F4FF,stroke:#1677FF,color:#0B3D91,stroke-width:1.5px,rounded:10px classDef orch fill:#FFF7E6,stroke:#FAAD14,color:#7C4A03,stroke-width:1.5px,rounded:10px classDef exec fill:#E8FFEE,stroke:#52C41A,color:#124D18,stroke-width:1.5px,rounded:10px classDef feed fill:#F3E5F5,stroke:#8E24AA,color:#4A148C,stroke-width:1.5px,rounded:10px class Ingest ingest class Orchestration orch class Execution exec class Feedback feed

为什么选择 Dify Workflow 做智能家居自动化?

在智能家居生态中,逻辑规则 + AI 推理的结合是未来趋势。传统的自动化平台(如 Home Assistant、Tuya Scene、Apple HomeKit)在条件触发方面非常成熟,但它们的 规则是固定的、缺乏语义理解能力

Dify Workflow 的优势在于:

  1. 自然语言编排
    • 用户可以直接用自然语言描述自动化逻辑(如“每天太阳下山前30分钟打开花园灯”),AI 自动生成对应的自动化流程。
  2. 强大的多模型集成能力
    • 支持调用 OpenAI、Claude、DeepSeek、Gemini 等多种模型,甚至可以在一个流程中结合多模型协作。
  3. 数据融合能力
    • 可同时接收来自不同协议(MQTT、HTTP、WebSocket)的设备数据,并与外部 API 数据融合(天气、电价、地图位置等)。
  4. 跨平台互通
    • 可与 Home Assistant、Tuya、ESPHome、Node-RED、n8n 等平台互联,实现真正的多生态融合。

如何快速导入这些 Workflow?

  1. 安装 Dify
    • 推荐使用 Docker 一键部署:
docker run -d --name dify \
  -p 3000:3000 \
  -v ./dify-data:/app/data \
  dify/dify:latest
  1. 导入 Workflow 文件
    • 登录 Dify 控制台 → Workflow 管理 → 导入 JSON 文件。
    • 本文的 10 个实例可直接按需导入(可将触发条件和 API 密钥替换为你的硬件参数)。
  2. 接入你的设备平台
    • MQTT 设备 → 在 Dify 中配置 MQTT 节点(填入 Broker 地址、Topic)
    • Tuya / Home Assistant → 使用 Webhook 或 API Key 调用设备控制接口
    • 第三方数据源(天气、电价) → 直接在 Workflow 添加 API 调用节点
  3. 测试与部署
    • 在模拟器中运行测试,确保设备响应正确
    • 启用后,Workflow 将持续在后台运行,实时处理触发条件

最佳实践与优化建议

  • 模块化设计 将相似的流程封装成子 Workflow,比如“设备开关控制模块”可以被多个自动化流程调用。
  • 引入AI校验机制 在执行前增加一个 AI 节点检查执行条件,避免误触发(例如宠物移动被误判为入侵)。
  • 与传统自动化结合 对于确定性规则(如定时开关灯),用 Home Assistant / Tuya 执行; 对于模糊逻辑(如基于语义的场景切换),用 Dify Workflow 执行。

总结

通过本文的 10 个 Dify Workflow 实例,智能家居用户不仅可以快速实现高效自动化,还能在此基础上加入 AI 推理能力,让家变得更聪明、更贴近生活习惯。

未来,随着 边缘AI芯片、低延迟大模型、本地语音识别 技术的普及,AI + Workflow 的模式将成为智能家居的标配。

如果你想深度定制符合您业务需求的Workflow,点这里联系我们



典型应用介绍

相关技术方案

物联网平台

是否需要我们帮忙?

若是您有同样的需求或困扰,打电话给我们,我们会帮您梳理需求,定制合适的方案。

010-62386352


星野云联专家微信
星野云联专家微信

© 2025 Zedyer, Inc. All Rights Reserved.

京ICP备2021029338号-2