- Mark Ren
-
-
-
在智能家居系统的自动化场景中,很多人会用 Home Assistant、Tuya、米家、HomeKit 等平台做自动化逻辑,但这些平台的内置逻辑编排往往比较“硬”,需要用户自己写复杂的条件和脚本。Dify Workflow 的出现,让 AI 驱动的自动化成为可能——它不仅能接入本地或云端的智能家居设备,还可以在触发条件中引入 AI 推理、自然语言处理、多模态识别等能力,实现真正的“聪明”家居。
本文精选了 10个可以直接复制并稍加修改即可使用的 Dify Workflow 智能家居实例,覆盖安防、能源管理、环境调节、家电控制等核心场景。你可以直接将这些 Workflow 导入到 Dify 平台,根据自己的设备 API、MQTT 主题或 Webhook URL 进行配置,即可快速上线。
实例 1:AI 安防报警助手
功能描述
- 联动家庭摄像头与 AI 图像识别,当检测到有人闯入并且不是家庭成员时,触发推送与声光报警。
- 结合人脸识别与人体姿态分析,减少宠物或快递员误报。
Workflow 核心流程
- 订阅摄像头事件(MQTT/RTSP AI 检测回调)
- AI 节点调用人脸数据库比对
- 如果识别为陌生人 → 控制灯光闪烁 + 推送语音到智能音箱
- 同时向手机 App 推送带截图的警报通知
适配建议
- 摄像头品牌:海康威视、TP-Link Tapo、Tuya 摄像头
- AI 模型:OpenAI Vision API / YOLOv8 / DeepFace
AI 安防报警助手(摄像头 + 人脸识别 + 报警联动)
{
"name": "AI 安防报警助手",
"version": "1.0",
"description": "摄像头事件→人脸识别→陌生人触发报警与通知",
"env": {
"MQTT_BROKER_URL": "mqtt://broker.local:1883",
"CAMERA_EVENT_TOPIC": "home/cam/frontdoor/event",
"KNOWN_FACE_API": "https://your-face-api/identify",
"ALERT_WEBHOOK": "https://your-app/alert",
"SPEAKER_TTS_API": "https://your-speaker/tts"
},
"triggers": [
{
"id": "t1",
"type": "mqtt",
"topic": "{{CAMERA_EVENT_TOPIC}}",
"qos": 1,
"payload_mapping": "json"
}
],
"nodes": [
{
"id": "n1",
"type": "condition",
"name": "是否有人触发",
"params": { "expr": "payload.event == 'motion' || payload.event == 'person_detected'" }
},
{
"id": "n2",
"type": "http",
"name": "人脸识别",
"params": {
"method": "POST",
"url": "{{KNOWN_FACE_API}}",
"headers": { "Content-Type": "application/json" },
"body": { "image_url": "{{payload.snapshot_url}}" }
}
},
{
"id": "n3",
"type": "condition",
"name": "是否陌生人",
"params": { "expr": "result.n2.body.is_known == false" }
},
{
"id": "n4",
"type": "http",
"name": "推送报警到App",
"params": {
"method": "POST",
"url": "{{ALERT_WEBHOOK}}",
"body": {
"title": "门口疑似入侵",
"message": "检测到陌生人",
"image": "{{payload.snapshot_url}}"
}
}
},
{
"id": "n5",
"type": "http",
"name": "语音播报警示",
"params": {
"method": "POST",
"url": "{{SPEAKER_TTS_API}}",
"body": { "text": "警告!检测到陌生人,请注意安全!" }
}
}
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "n1", "to": "n2", "condition": "true" },
{ "from": "n2", "to": "n3" },
{ "from": "n3", "to": "n4", "condition": "true" },
{ "from": "n3", "to": "n5", "condition": "true" }
]
}
实例 2:智能节能照明调节
功能描述
- 根据室外光照强度、房间内活动情况,自动调整灯光亮度与色温,节省用电。
Workflow 核心流程
- 定时或传感器上报光照强度
- AI 节点计算所需照度(结合时间、天气、用户喜好)
- 控制灯具亮度和色温(通过 Tuya API 或 Zigbee2MQTT)
- 用日志记录每次调节的节能效果
适配建议
- 光照传感器:Aqara、Philips Hue、米家光照传感器
- 灯具控制:Zigbee、Wi-Fi 智能灯泡
智能节能照明调节(光照 + 活动 + 灯光亮度/色温)
{
"name": "智能节能照明调节",
"version": "1.0",
"description": "根据室外光照/室内活动自动调灯",
"env": {
"LUX_TOPIC": "home/sensor/lux",
"PRESENCE_TOPIC": "home/room/living/presence",
"LIGHT_API": "https://your-iot/light/set",
"MODEL_API": "https://your-ai/lighting"
},
"triggers": [
{ "id": "t1", "type": "mqtt", "topic": "{{LUX_TOPIC}}", "payload_mapping": "json" },
{ "id": "t2", "type": "mqtt", "topic": "{{PRESENCE_TOPIC}}", "payload_mapping": "json" },
{ "id": "t3", "type": "schedule", "cron": "*/10 * * * *" }
],
"nodes": [
{
"id": "n1",
"type": "ai",
"name": "计算最佳照度与色温",
"params": {
"model": "gpt-4.1-mini",
"prompt": "根据室外光照、当前时间、是否有人活动与节能策略,输出推荐亮度(0-100)与色温(2700-6500K)。输入: {{context}}",
"inputs": { "context": { "lux": "{{state.lux}}", "presence": "{{state.presence}}", "time": "{{now}}"} }
}
},
{
"id": "n2",
"type": "http",
"name": "下发灯光设置",
"params": {
"method": "POST",
"url": "{{LIGHT_API}}",
"body": { "brightness": "{{result.n1.output.brightness}}", "ct": "{{result.n1.output.ct}}" }
}
}
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "t2", "to": "n1" },
{ "from": "t3", "to": "n1" },
{ "from": "n1", "to": "n2" }
],
"state_reducers": {
"lux": { "on": "t1", "path": "payload.value" },
"presence": { "on": "t2", "path": "payload.present" }
}
}
实例 3:AI 智能空调调温
功能描述
- 结合天气预报、室内温湿度、用户体感反馈,实现“懂你”的空调温控策略。
Workflow 核心流程
- 室内温湿度传感器实时上报
- AI 节点分析外部天气 + 用户历史喜好
- 计算最佳温度(例如湿度高时略调低温度)
- 控制空调模式、温度与风速
适配建议
- 空调控制:红外遥控器桥接、Home Assistant + Tuya
- AI 节点:Dify 内置 OpenAI / Claude
AI 智能空调调温(天气 + 体感偏好)
{
"name": "AI 智能空调调温",
"version": "1.0",
"description": "天气+室内温湿度+偏好 → 最佳空调参数",
"env": {
"INDOOR_THS_TOPIC": "home/sensor/ths/living",
"WEATHER_API": "https://api.weather.com/v3/...",
"AC_API": "https://your-iot/ac/set"
},
"triggers": [
{ "id": "t1", "type": "mqtt", "topic": "{{INDOOR_THS_TOPIC}}", "payload_mapping": "json" },
{ "id": "t2", "type": "schedule", "cron": "*/5 * * * *" }
],
"nodes": [
{
"id": "n1",
"type": "http",
"name": "获取外部天气",
"params": { "method": "GET", "url": "{{WEATHER_API}}?loc=beijing" }
},
{
"id": "n2",
"type": "ai",
"name": "计算空调设定",
"params": {
"model": "gpt-4.1",
"prompt": "根据室内温湿度与天气,输出 mode(cool/heat/auto), temp(℃), fan(low/med/high)。输入:室内{{payload}},天气{{result.n1.body}}"
}
},
{
"id": "n3",
"type": "http",
"name": "设置空调",
"params": { "method": "POST", "url": "{{AC_API}}", "body": "{{result.n2.output}}" }
}
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "t2", "to": "n1" },
{ "from": "n1", "to": "n2" },
{ "from": "n2", "to": "n3" }
]
}
实例 4:AI 洗衣机状态预测
功能描述
- 基于用电曲线和震动数据,预测洗衣机运行状态,提前告知用户完成时间。
Workflow 核心流程
- 功率传感器采集实时耗电数据
- AI 模型分析运行模式曲线
- 判断“运行/漂洗/脱水/结束”阶段
- 预计完成时间并推送到手机与智能音箱
适配建议
- 能耗监测:Shelly Plug、Tuya 插座、WattPanel 系列
- 数据处理:Dify 调用 Python Code Execution 节点
AI 洗衣机状态预测(能耗曲线 + 震动)
{
"name": "AI 洗衣机状态预测",
"version": "1.0",
"description": "基于功率曲线预测阶段与完成时间",
"env": {
"POWER_TOPIC": "home/appliance/washer/power",
"NOTIFY_WEBHOOK": "https://your-app/notify"
},
"triggers": [
{ "id": "t1", "type": "mqtt", "topic": "{{POWER_TOPIC}}", "payload_mapping": "json" }
],
"nodes": [
{
"id": "n1",
"type": "ai",
"name": "阶段识别与时间估计",
"params": {
"model": "gpt-4.1-mini",
"prompt": "根据过去30分钟功率序列识别洗衣阶段(洗/漂/脱水/完成)并估算剩余时间(分钟)。输入: {{series}}",
"inputs": { "series": "{{timeseries.last_30m(POWER_TOPIC)}}" }
}
},
{
"id": "n2",
"type": "http",
"name": "通知用户",
"params": {
"method": "POST",
"url": "{{NOTIFY_WEBHOOK}}",
"body": { "title": "洗衣机状态更新", "stage": "{{result.n1.output.stage}}", "eta_min": "{{result.n1.output.eta_min}}" }
}
}
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "n1", "to": "n2" }
]
}
实例 5:智能花园灌溉助手
功能描述
- 根据天气、土壤湿度和植物种类自动浇水,并避免雨天或高湿天气浪费水资源。
Workflow 核心流程
- 土壤湿度传感器与天气 API 数据输入
- AI 模型判断是否需要浇水
- 控制电磁阀开关(MQTT/Relay)
- 记录灌溉日志与节水数据
适配建议
- 传感器:Tuya 土壤湿度传感器、Sonoff TH 系列
- 执行设备:12V 电磁阀 + 智能继电器
智能花园灌溉助手(湿度 + 天气 + 电磁阀)
{
"name": "智能花园灌溉助手",
"version": "1.0",
"description": "湿度/天气/植物类型 → 自动灌溉",
"env": {
"SOIL_TOPIC": "home/garden/soil",
"WEATHER_API": "https://api.weather.com/v3/...",
"VALVE_TOPIC": "home/garden/valve/set"
},
"triggers": [
{ "id": "t1", "type": "mqtt", "topic": "{{SOIL_TOPIC}}", "payload_mapping": "json" },
{ "id": "t2", "type": "schedule", "cron": "0 */1 * * *" }
],
"nodes": [
{ "id": "n1", "type": "http", "name": "获取天气", "params": { "method": "GET", "url": "{{WEATHER_API}}?loc=beijing" } },
{
"id": "n2",
"type": "ai",
"name": "判断是否浇水",
"params": {
"model": "gpt-4.1-mini",
"prompt": "根据土壤湿度{{payload.moisture}}与天气{{result.n1.body}},输出 irrigate(true/false) 与 duration_sec。",
"stop": []
}
},
{
"id": "n3",
"type": "mqtt_publish",
"name": "控制电磁阀",
"params": {
"broker": "{{MQTT_BROKER_URL}}",
"topic": "{{VALVE_TOPIC}}",
"qos": 1,
"payload": { "on": "{{result.n2.output.irrigate}}", "duration": "{{result.n2.output.duration_sec}}" }
}
}
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "t2", "to": "n1" },
{ "from": "n1", "to": "n2" },
{ "from": "n2", "to": "n3", "condition": "result.n2.output.irrigate == true" }
]
}
实例 6:AI 语音家务助理
功能描述
- 家人通过智能音箱或手机语音输入自然语言指令(如“帮我启动扫地机器人”),AI 解析意图并执行相应的家务任务。
Workflow 核心流程
- 语音转文字(ASR)模块接收用户指令
- AI 节点做意图识别与任务匹配
- 调用相应设备 API(扫地机器人、窗帘、电饭煲等)
- 向用户回传执行结果(TTS 播报或 App 通知)
适配建议
- 硬件:小爱音箱、Google Nest Audio、Amazon Echo
- AI 模型:OpenAI GPT、Claude、DeepSeek-R1
AI 语音家务助理(ASR + 意图识别 + 家电控制)
{
"name": "AI 语音家务助理",
"version": "1.0",
"description": "语音意图→扫地/窗帘/电饭煲等控制",
"env": {
"ASR_WEBHOOK": "https://your-asr/callback",
"DEVICE_API": "https://your-iot/device/command"
},
"triggers": [
{ "id": "t1", "type": "webhook", "path": "/voice-intent", "method": "POST" }
],
"nodes": [
{
"id": "n1",
"type": "ai",
"name": "意图识别与槽位提取",
"params": {
"model": "gpt-4.1-mini",
"prompt": "从用户指令中抽取 intent(扫地/窗帘/电饭煲等) 与 slots(房间/时间/模式)。输入: {{payload.text}}"
}
},
{
"id": "n2",
"type": "http",
"name": "下发设备命令",
"params": {
"method": "POST",
"url": "{{DEVICE_API}}",
"body": { "intent": "{{result.n1.output.intent}}", "slots": "{{result.n1.output.slots}}" }
}
}
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "n1", "to": "n2" }
]
}
实例 7:家庭成员到家提醒与自动场景
功能描述
- 利用定位与人脸识别判断家庭成员是否到家,并自动触发欢迎场景(开灯、开空调、播放音乐)。
Workflow 核心流程
- 通过手机定位或门口摄像头人脸识别确认身份
- AI 节点匹配用户偏好场景
- 执行灯光、温控、音响、窗帘等多设备联动
- 记录回家时间用于家庭成员出入统计
适配建议
- 位置服务:Home Assistant Companion App、Tuya GeoFence
- AI 场景匹配:Dify 结合用户配置数据库
家人到家提醒与自动场景(定位/人脸 → 场景匹配)
{
"name": "到家提醒与自动场景",
"version": "1.0",
"description": "定位/人脸识别→匹配个性化场景",
"env": {
"PRESENCE_WEBHOOK": "https://your-app/presence",
"SCENE_API": "https://your-iot/scene/run"
},
"triggers": [
{ "id": "t1", "type": "webhook", "path": "/presence", "method": "POST" }
],
"nodes": [
{ "id": "n1", "type": "ai", "name": "偏好场景匹配", "params": { "model": "gpt-4.1-mini", "prompt": "根据家庭成员{{payload.user}}的偏好与时间段,输出要触发的场景列表。" } },
{ "id": "n2", "type": "http", "name": "执行场景", "params": { "method": "POST", "url": "{{SCENE_API}}", "body": { "scenes": "{{result.n1.output.scenes}}" } } }
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "n1", "to": "n2" }
]
}
实例 8:AI 厨房助手
功能描述
- 根据冰箱库存、家庭成员口味和天气推荐菜谱,并指导智能厨电完成烹饪。
Workflow 核心流程
- 冰箱库存传感器或手动录入库存数据
- AI 节点根据库存、口味、天气生成菜单
- 控制电饭煲、烤箱等厨电执行烹饪模式
- 在智能屏或 App 上显示步骤提示
适配建议
- 硬件:博世智能冰箱、米家电饭煲
- 菜谱推荐:调用 Dify 内的 LangChain + 知识库检索
AI 厨房助手(库存/口味/天气 → 菜谱 + 厨电控制)
{
"name": "AI 厨房助手",
"version": "1.0",
"description": "根据库存/口味/天气推荐菜谱并控制厨电",
"env": {
"INVENTORY_API": "https://your-kitchen/inventory",
"WEATHER_API": "https://api.weather.com/v3/...",
"COOKER_API": "https://your-iot/cooker"
},
"triggers": [
{ "id": "t1", "type": "webhook", "path": "/menu", "method": "POST" }
],
"nodes": [
{ "id": "n1", "type": "http", "name": "获取库存", "params": { "method": "GET", "url": "{{INVENTORY_API}}" } },
{ "id": "n2", "type": "http", "name": "获取天气", "params": { "method": "GET", "url": "{{WEATHER_API}}?loc=beijing" } },
{
"id": "n3",
"type": "ai",
"name": "生成菜谱",
"params": {
"model": "gpt-4.1",
"prompt": "结合库存{{result.n1.body}}、口味{{payload.preference}}、天气{{result.n2.body}},输出菜谱与步骤。"
}
},
{ "id": "n4", "type": "http", "name": "控制厨电", "params": { "method": "POST", "url": "{{COOKER_API}}", "body": "{{result.n3.output.program}}" } }
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "t1", "to": "n2" },
{ "from": "n1", "to": "n3" },
{ "from": "n2", "to": "n3" },
{ "from": "n3", "to": "n4" }
]
}
实例 9:AI 宠物看护
功能描述
- 结合摄像头、自动喂食器和环境传感器,实现远程宠物看护与健康提醒。
Workflow 核心流程
- 摄像头捕捉宠物活动并做姿态识别
- AI 节点分析是否需要喂食或提醒清理
- 控制自动喂食器、饮水机等
- 向主人推送宠物健康报告
适配建议
- 硬件:Petcube Camera、Tuya 宠物喂食器
- AI 分析:YOLOv8 + 动作识别模型
AI 宠物看护(摄像头 + 喂食器 + 健康提醒)
{
"name": "AI 宠物看护",
"version": "1.0",
"description": "姿态识别+定时喂食+健康报告",
"env": {
"PET_CAM_TOPIC": "home/cam/pet/event",
"FEEDER_API": "https://your-iot/feeder",
"OWNER_NOTIFY": "https://your-app/pet/notify"
},
"triggers": [
{ "id": "t1", "type": "mqtt", "topic": "{{PET_CAM_TOPIC}}", "payload_mapping": "json" }
],
"nodes": [
{
"id": "n1",
"type": "ai",
"name": "宠物活动分析",
"params": { "model": "gpt-4.1-mini", "prompt": "根据活动检测与历史进食时间,判断是否需要喂食或提醒清洁。" }
},
{ "id": "n2", "type": "http", "name": "控制喂食器", "params": { "method": "POST", "url": "{{FEEDER_API}}", "body": "{{result.n1.output.feed_cmd}}" } },
{ "id": "n3", "type": "http", "name": "推送健康报告", "params": { "method": "POST", "url": "{{OWNER_NOTIFY}}", "body": "{{result.n1.output.health_report}}" } }
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "n1", "to": "n2", "condition": "result.n1.output.feed == true" },
{ "from": "n1", "to": "n3" }
]
}
实例 10:全屋能源优化助手
功能描述
- 根据电价、用电曲线和天气预测,自动调整家电运行时间,降低峰值用电费用。
Workflow 核心流程
- 电价 API + 实时用电数据输入
- AI 节点预测未来 24 小时用电曲线
- 自动安排家电(洗衣机、热水器等)运行时段
- 每日生成节能报告
适配建议
- 能耗监测:Grus.io WattPanel 系列、Shelly EM
- AI 预测:Dify + 时序预测模型(Prophet/LSTM)
全屋能源优化助手(电价 + 负载预测 + 设备排程)
{
"name": "全屋能源优化助手",
"version": "1.0",
"description": "电价与用电曲线预测→家电排程优化",
"env": {
"POWER_STREAM_TOPIC": "home/energy/power",
"ELECTRICITY_PRICE_API": "https://your-grid/price",
"SCHEDULER_API": "https://your-iot/scheduler"
},
"triggers": [
{ "id": "t1", "type": "schedule", "cron": "0 */1 * * *" }
],
"nodes": [
{ "id": "n1", "type": "http", "name": "获取电价", "params": { "method": "GET", "url": "{{ELECTRICITY_PRICE_API}}" } },
{
"id": "n2",
"type": "ai",
"name": "未来24小时负载预测",
"params": {
"model": "gpt-4.1",
"prompt": "根据历史用电序列{{timeseries.last_24h(POWER_STREAM_TOPIC)}}与电价{{result.n1.body}},输出设备排程建议,避免峰段。"
}
},
{ "id": "n3", "type": "http", "name": "下发排程", "params": { "method": "POST", "url": "{{SCHEDULER_API}}", "body": "{{result.n2.output.schedule}}" } }
],
"edges": [
{ "from": "t1", "to": "n1" },
{ "from": "n1", "to": "n2" },
{ "from": "n2", "to": "n3" }
]
}
使用与导入提示
- 把每段 JSON 存为独立文件(例如 wf-security.json、wf-lighting.json …),在 Dify 控制台选择 导入 Workflow。
- env 内的变量替换为你的实际配置:MQTT Broker、Webhook、设备 API、模型名称等。
- 如果你的 Dify 版本导出/导入 Schema 不一致,把 nodes[].type 调整为你实际版本的节点名(如 http-request、mqtt-publish、llm、code、condition 等),params 字段名也做对应替换。
Mermaid 图表:Dify Workflow 智能家居自动化架构
flowchart LR %% ========= 分层 ========= subgraph Ingest["输入采集层"] direction TB A["传感器/设备输入"] end subgraph Orchestration["编排与AI决策"] direction TB B["Dify Workflow"] C["AI 模型推理"] end subgraph Execution["执行与设备控制"] direction TB D["执行控制指令"] E["智能家居设备"] end subgraph Feedback["反馈与通知"] direction TB F["执行结果反馈"] G["用户终端App/音箱"] end %% ========= 主链路 ========= A -- "MQTT/HTTP Webhook" --> B B --> C C --> D D -- "API/MQTT/Zigbee" --> E E --> F F -- "通知" --> G %% ========= 美化样式 ========= classDef ingest fill:#E6F4FF,stroke:#1677FF,color:#0B3D91,stroke-width:1.5px,rounded:10px classDef orch fill:#FFF7E6,stroke:#FAAD14,color:#7C4A03,stroke-width:1.5px,rounded:10px classDef exec fill:#E8FFEE,stroke:#52C41A,color:#124D18,stroke-width:1.5px,rounded:10px classDef feed fill:#F3E5F5,stroke:#8E24AA,color:#4A148C,stroke-width:1.5px,rounded:10px class Ingest ingest class Orchestration orch class Execution exec class Feedback feed
为什么选择 Dify Workflow 做智能家居自动化?
在智能家居生态中,逻辑规则 + AI 推理的结合是未来趋势。传统的自动化平台(如 Home Assistant、Tuya Scene、Apple HomeKit)在条件触发方面非常成熟,但它们的 规则是固定的、缺乏语义理解能力。
而 Dify Workflow 的优势在于:
- 自然语言编排
- 用户可以直接用自然语言描述自动化逻辑(如“每天太阳下山前30分钟打开花园灯”),AI 自动生成对应的自动化流程。
- 强大的多模型集成能力
- 支持调用 OpenAI、Claude、DeepSeek、Gemini 等多种模型,甚至可以在一个流程中结合多模型协作。
- 数据融合能力
- 可同时接收来自不同协议(MQTT、HTTP、WebSocket)的设备数据,并与外部 API 数据融合(天气、电价、地图位置等)。
- 跨平台互通
- 可与 Home Assistant、Tuya、ESPHome、Node-RED、n8n 等平台互联,实现真正的多生态融合。
如何快速导入这些 Workflow?
- 安装 Dify
- 推荐使用 Docker 一键部署:
docker run -d --name dify \
-p 3000:3000 \
-v ./dify-data:/app/data \
dify/dify:latest
- 导入 Workflow 文件
- 登录 Dify 控制台 → Workflow 管理 → 导入 JSON 文件。
- 本文的 10 个实例可直接按需导入(可将触发条件和 API 密钥替换为你的硬件参数)。
- 接入你的设备平台
- MQTT 设备 → 在 Dify 中配置 MQTT 节点(填入 Broker 地址、Topic)
- Tuya / Home Assistant → 使用 Webhook 或 API Key 调用设备控制接口
- 第三方数据源(天气、电价) → 直接在 Workflow 添加 API 调用节点
- 测试与部署
- 在模拟器中运行测试,确保设备响应正确
- 启用后,Workflow 将持续在后台运行,实时处理触发条件
最佳实践与优化建议
- 模块化设计 将相似的流程封装成子 Workflow,比如“设备开关控制模块”可以被多个自动化流程调用。
- 引入AI校验机制 在执行前增加一个 AI 节点检查执行条件,避免误触发(例如宠物移动被误判为入侵)。
- 与传统自动化结合 对于确定性规则(如定时开关灯),用 Home Assistant / Tuya 执行; 对于模糊逻辑(如基于语义的场景切换),用 Dify Workflow 执行。
总结
通过本文的 10 个 Dify Workflow 实例,智能家居用户不仅可以快速实现高效自动化,还能在此基础上加入 AI 推理能力,让家变得更聪明、更贴近生活习惯。
未来,随着 边缘AI芯片、低延迟大模型、本地语音识别 技术的普及,AI + Workflow 的模式将成为智能家居的标配。
如果你想深度定制符合您业务需求的Workflow,点这里联系我们
典型应用介绍